Structure of Jupiter's upper atmosphere: Predictions for Galileo
نویسندگان
چکیده
The Voyager mission to the outer solar system discovered that the thermospheres of all the giant planets are remarkably hot. To date, no convincing explanation for this phenomenon has been offered; however, there are a number of recent observational results which provide new information on the thermal structure of Jupiter's upper atmosphere that bear on this outstanding problem. We present an analysis of Jupiter's thermal structure using constraints from H3 + emissions, Voyager UVS occultation data, ground-based stellar occultation data, and the properties of the Jovian UV dayglow. Although the initial, separate analysis of these data sets produced contradictory results, our reanalysis shows that the observations are consistent and that the temperature profile in Jupiter's upper atmosphere is well constrained. We find that the data demand the presence of a large temperature gradient, of order 3-10 K/km, near a pressure of 0.3 μbar. Analysis of the temperature profile implies that an energy source of roughly 1 erg cm-2 s-1 is required to produce the high thermospheric temperature and that this energy must be deposited in the 0.1-1.0 μbar region. It is also necessary that this energy be deposited above the region where diffusive separation of CH4 occurs, so that the energy is not radiated away by CH4. We show that dissipation of gravity waves can supply the energy required and that this energy will be deposited in the proper region. Moreover, because the turbulent mixing caused by gravity waves determines the level at which diffusive separation of CH4 occurs, the location of the energy source (dissipation of waves) and the energy sink (radiation by CH4) are coupled. We show that the gravity waves will deposit their energy several scale heights above the CH4 layer; energy is carried downward by thermal conduction in the intervening region, causing the large temperature gradient. Thus dissipation of gravity waves appears to be a likely explanation for the high thermospheric temperature. Our arguments are general and should apply to Saturn, Uranus, and Neptune, as well as Jupiter. The model temperature profiles presented here and the relationship between the gravity wave flux and thermospheric temperature are directly testable by the Atmospheric Structure Instrument carried by the Galileo probe.
منابع مشابه
Young Et Al. 2002, Gravity Waves in Jupiter's Stratosphere 2. Observations
The temperatures in Jupiter's stratosphere, as measured by the Galileo Atmosphere Structure Instrument (ASI), show fluctuations that have been interpreted as gravity waves. We present a detailed description of these fluctuations, showing that they are not likely to be due to either measurement error or isotropic turbulence. These fluctuations share features with gravity waves observed in the te...
متن کاملA comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin.
We present our current understanding of the composition, vertical mixing, cloud structure and the origin of the atmospheres of Jupiter and Saturn. Available observations point to a much more vigorous vertical mixing in Saturn's middle-upper atmosphere than in Jupiter's. The nearly cloud-free nature of the Galileo probe entry site, a 5-micron hotspot, is consistent with the depletion of condensa...
متن کاملGravity Waves in Jupiter's Thermosphere
The Atmosphere Structure Instrument on the Galileo probe detected wavelike temperature fluctuations superimposed on a 700-kelvin temperature increase in Jupiter's thermosphere. These fluctuations are consistent with gravity waves that are viscously damped in the thermosphere. Moreover, heating by these waves can explain the temperature increase measured by the probe. This heating mechanism shou...
متن کاملThe Galileo probe mission to Jupiter: Science overview
This paper is an introduction to and overview of the accompanying papers in this issue which give detailed results from the Galileo probe mission to Jupiter, including results from the Galileo orbiter and Earth-based observations that are relevant for understanding the probe data and placing them in context. A summary of prior knowledge of Jupiter's atmosphere is also presented. All probe scien...
متن کاملEarth-Based Observations of the Galileo Probe Entry Site
Earth-based observations of Jupiter indicate that the Galileo probe probably entered Jupiter's atmosphere just inside a region that has less cloud cover and drier conditions than more than 99 percent of the rest of the planet. The visual appearance of the clouds at the site was generally dark at longer wavelengths. The tropospheric and stratospheric temperature fields have a strong longitudinal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996